Ocean acoustic hurricane classification.
نویسندگان
چکیده
Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques.
منابع مشابه
Quantifying hurricane destructive power, wind speed, and air-sea material exchange with natural undersea sound
[1] Passive ocean acoustic measurements may provide a safe and inexpensive means of accurately quantifying the destructive power of a hurricane. This is demonstrated by correlating the underwater sound intensity of Hurricane Gert with meteorological data acquired by aircraft transects and satellite surveillance. The intensity of low frequency underwater sound measured directly below the hurrica...
متن کاملOcean - Wave Coupled Modeling in COAMPS - TC : A Study of Hurricane Ivan ( 2004 ) 0603207 N 73 - 9270 - 01 - 5
Tropical cyclone ocean–wave model interactions are examined using an ESMF – (Earth System Modeling Framework) based tropical cyclone (TC) version of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS ). This study investigates Hurricane Ivan, which traversed the Gulf of Mexico (GOM) in September 2004. Several oceanic and wave observational data sets, including Acoustic Doppler Cur...
متن کاملDirectional Wind–Wave Coupling in Fully Coupled Atmosphere–Wave–Ocean Models: Results from CBLAST-Hurricane
The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in hurricanes push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. The Coupled Boundary Layer Air–Sea Transfer (CBLAST)-Hurricane program is aimed at developing improved coupling parameterizations (using the observations collected during the CBLAST-Hurricane field...
متن کاملOcean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations
Forecasting hurricane impacts of extremewinds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and direc...
متن کامل17A.l NUMERICAL SIMULATIONS OF HURRICANE-OCEAN INTERACTION WITH A HIGH RESOLUTION COUPLED MODEL
The topic of tropical cyclone-ocean interaction has received increased attention in the tropical meteorology community over the past several years. It is widely recognized that the major energy source for tropical cyclones is the evaporation from the ocean. The sea surface temperature (SST) is a crucial parameter in this process. A negative feedback mechanism in the tropical cyclone-ocean syste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 119 1 شماره
صفحات -
تاریخ انتشار 2006